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Abstract

The Cowin–Mehrabadi theorem is generalized to allow less restrictive and more flexible conditions for locating a

symmetry plane in an anisotropic elastic material. The generalized theorems are then employed to prove that the

number of linear elastic symmetries is eight. The proof starts by imposing a symmetry plane to a triclinic material and,

after new elastic symmetries are found, another symmetry plane is imposed. This process exhausts all possibility of

elastic symmetries, and shows that there are only eight elastic symmetries. At each stage when a new symmetry plane is

added, explicit results are obtained for the locations of the new symmetry plane that lead to a new elastic symmetry. It

takes as few as three, and at most five, symmetry planes to reduce a triclinic material (which has no symmetry plane) to

an isotropic material for which any plane is a symmetry plane.
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1. Introduction

In a linear anisotropic elastic material, let n be a unit vector normal to the plane of material symmetry. If
m is any vector on the symmetry plane, a set of necessary and sufficient conditions for n to be normal to the

symmetry plane is (Cowin and Mehrabadi, 1987)
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Cijksmjmsnk ¼ ðCpqrtnpmqnrmtÞni; ð1:4Þ
in which repeated indices imply summation and Cijks is the elastic stiffness which is assumed to possess the

full symmetry
Cijks ¼ Cjiks ¼ Cijsk ¼ Cksij: ð1:5Þ
If we define the 3· 3 matrices U, V, Q(n) whose elements are given by
Uij ¼ Cijkk; Vik ¼ Cisks; QikðnÞ ¼ Cijksnjns; ð1:6Þ
(1.1)–(1.4) say that n is an eigenvector of U, V, Q(n) and Q(m) for any m on the symmetry plane. In a

separate paper, Cowin and Mehrabadi (1989) (see also Norris, 1989) showed that (1.3) and (1.4) are
necessary and sufficient conditions. Other alternate necessary and sufficient conditions can be found in Ting

(1996, pp. 60–62).

In Section 2, the Cowin–Mehrabadi theorem is generalized. It is shown that there is no need for n to

satisfy (1.4) for all m. It suffices to satisfy (1.4) for any one m when n is an eigenvector of U, V and Q(n). If n

is an eigenvector of two of the three matrices U, V, Q(n), it suffices to satisfy (1.4) for any two distinct m

(with one exception that the two m be nonorthogonal as shown in Theorem IIc). When n is an eigenvector

of any one of U, V,Q(n), it suffices to satisfy (1.4) for any three distinct m. In particular, (1.3) and (1.4) with

any three distinct m are necessary and sufficient conditions for n to be normal to a symmetry plane. This
feature is useful because, for any n, one can always choose three m that are on the coordinate planes. Thus

at least one of the three components of m vanishes. This simplifies the computation. The vectors n and m

need not be unit vectors because the scales of n and m can be absorbed in the eigenvalue.

It is known (Voigt, 1910; Nye, 1957) that there are eight elastic symmetries for a linear anisotropic elastic

material. Ting (1996, Chapter 2) has shown how to reduce all eight elastic symmetries by imposing as few as

three symmetry planes. He did not investigate if there are other elastic symmetries. Forte and Vianello

(1996) and Chadwick et al. (2001) proved that the number of elastic symmetries is eight. In this paper we

employ a more direct approach using the generalized Cowin–Mehrabadi theorems presented in Section 2.
The derivation is an expansion of the one employed in Ting (1996, Chapter 2). It resembles the one in

Chadwick et al. (2001) when the first and the second symmetry planes are added. The derivations are

different when the third symmetry plane is added.

The structure of the elastic stiffness matrix for a monoclinic material that has one symmetry plane is

presented in Section 2. In Section 3 a second symmetry plane is added to the monoclinic material. De-

pending on the location of the symmetry plane one obtains orthotropic, tetragonal, trigonal or transversely

isotropic material. In Sections 4–7 a third symmetry plane is added to the ones presented in Section 3.

Again, depending on the location of the third symmetry plane it may produce one of the four elastic
symmetries obtained in Section 3 or a cubic or isotropic material. A transversely isotropic or a cubic

material reduces to an isotropic material when any symmetry plane is added. Thus there are a total of eight

elastic symmetries, namely, triclinic, monoclinic, orthotropic, tetragonal, trigonal, transversely isotropic,

cubic and isotropic. The novel feature of the proof is that the plane added at each step is completely ar-

bitrary. Thus all possible choices of symmetry planes are exhausted at each step. An interesting result

obtained is the structure of the elastic matrix of a cubic material. It can resemble a tetragonal or a trigonal

material (Chadwick et al., 2001).
2. Generalized Cowin–Mehrabadi theorems

To present various sets of necessary and sufficient conditions for n to be normal to a symmetry plane, we
assume without loss in generality that x1 ¼ 0 is the plane of symmetry. Hence let
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ni ¼ di1; mi ¼ di2 cos hþ di3 sin h; ð2:1Þ

where h is an arbitrary constant and dij is the Kronecker delta. Eqs. (1.1)–(1.4) are trivial identities when

i ¼ 1. For i 6¼ 1 they reduce, respectively, to
Ci1kk ¼ 0; Cis1s ¼ 0; Ci111 ¼ 0;

Ci212 cos
2 hþ ðCi213 þ Ci312Þ cos h sin hþ Ci313 sin

2 h ¼ 0:
ð2:2Þ
In the contracted notation Cab, (2.2) for i ¼ 2; 3 are
C16 þ C26 þ C36 ¼ C15 þ C25 þ C35 ¼ 0; ð2:3Þ

C16 þ C26 þ C45 ¼ C15 þ C46 þ C35 ¼ 0; ð2:4Þ

C16 ¼ C15 ¼ 0; ð2:5Þ
and
C26 cos
2 hþ ðC25 þ C46Þ cos h sin hþ C45 sin

2 h ¼ 0;

C46 cos
2 hþ ðC45 þ C36Þ cos h sin hþ C35 sin

2 h ¼ 0:
ð2:6Þ
Thus (2.3)–(2.6) replace (1.1)–(1.4) when x1 ¼ 0 is the plane of symmetry. It is known (Voigt, 1910; Love,

1927) that, for a monoclinic material with the symmetry plane at x1 ¼ 0,
C15 ¼ C16 ¼ C25 ¼ C26 ¼ C35 ¼ C36 ¼ C45 ¼ C46 ¼ 0: ð2:7Þ

The structure of the 6 · 6 matrix Cab that satisfies (2.7) is
C ¼

C11 C12 C13 C14 0 0

C22 C23 C24 0 0

C33 C34 0 0

C44 0 0

C55 C56

C66

2
6666664

3
7777775
: ð2:8Þ
Only the upper triangle of the matrix is shown since C is symmetric. With (2.7), (2.3)–(2.6) are trivially

satisfied for all h. Thus n being an eigenvector of U, V, Q(n), Q(m) for all m is a sufficient condition for n to

be normal to the symmetry plane. However, it is not a necessary condition. We derive necessary conditions

below.

When n is an eigenvector of U, Un is proportional to n. This means that mTUn ¼ 0 for any two m, which

is (2.3). Thus n being an eigenvector of a matrix imposes two conditions on Cab. When n is an eigenvector of
U, V, Q(n), Q(m), we have eight conditions on Cab given in (2.3)–(2.6). We show that, of the four matrices

we need for n to be an eigenvector, we can choose one, two or three matrices among U, V, Q(n). The

remaining matrices are supplied by Q(m) for different m. They are discussed separately below.

When n is an eigenvector of U, V, Q(n) and Q(m), (2.3)–(2.6) apply. With (2.5), (2.3) and (2.4) give
C26 þ C36 ¼ C25 þ C35 ¼ C26 þ C45 ¼ C46 þ C35 ¼ 0; ð2:9Þ
and (2.6) is
C26 cos 2h� C35 sin 2h ¼ 0; C26 sin 2hþ C35 cos 2h ¼ 0: ð2:10Þ

The two equations in (2.10) hold only when
C26 ¼ C35 ¼ 0: ð2:11Þ
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Together with (2.9) we obtain (2.7). Eq. (2.10) leads to (2.11) for any h. Hence n needs to be an eigenvector

of Q(m) for only one m. This proves the following theorem.

Theorem I. A necessary and sufficient condition for n to be normal to the symmetry plane is that n be an

eigenvector of U, V, Q(n) and Q(m) for any one m.

We next consider the case when n is an eigenvector of two of the three matrices U, V and Q(n). We then

need n an eigenvector of Q(m) for two m.

Let n be an eigenvector of U, V and Q(m) for any two m. In this case (2.3), (2.4) and (2.6) hold for

h ¼ h1; h2, say. When (2.3) and (2.4) hold, C36 ¼ C45 and C25 ¼ C46, and (2.6) can be written as
C26 cos
2 hþ C46 sin 2hþ C45 sin

2 h ¼ 0;

C46 cos
2 hþ C45 sin 2hþ C35 sin

2 h ¼ 0:
ð2:12Þ
Application of (2.12) for h ¼ h1; h2 gives four equations that can be written as
cos2 h1 sin2 h1 sin 2h1 0
cos2 h2 sin2 h2 sin 2h2 0

0 sin 2h1 cos2 h1 sin2 h1
0 sin 2h2 cos2 h2 sin2 h2

2
664

3
775

C26

C45

C46

C35

2
664

3
775 ¼ 0: ð2:13Þ
The determinant of the 4 · 4 matrix can be shown to be sin4ðh1 � h2Þ, which is nonzero when the two m are

distinct. The vectors m and �m are not considered distinct because if n is an eigenvector of Q(m), it is an
eigenvector of Qð�mÞ. Hence when the two m are distinct, (2.13) gives
C26 ¼ C45 ¼ C46 ¼ C35 ¼ 0: ð2:14Þ
Together with (2.3) and (2.4) we obtain (2.7). We therefore have the theorem:

Theorem IIa. A necessary and sufficient condition for n to be normal to the symmetry plane is that n be an

eigenvector of U, V and Q1(m) for any two distinct m.

Let n be an eigenvector of U, Q(n) and Q(m) for any two m. In this case (2.3), (2.5) and (2.6) hold for

h ¼ h1; h2. When (2.3) and (2.5) hold, C36 ¼ �C26 and C25 ¼ �C35. Eq. (2.6) gives four equations for

h ¼ h1; h2, which can be written as
cos2 h1 sin2 h1 1
2
sin 2h1 �1

2
sin 2h1

cos2 h2 sin2 h2 1
2
sin 2h2 �1

2
sin 2h2

�1
2
sin 2h1 1

2
sin 2h1 cos2 h1 sin2 h1

�1
2
sin 2h2 1

2
sin 2h2 cos2 h2 sin2 h2

2
6664

3
7775

C26

C45

C46

C35

2
664

3
775 ¼ 0: ð2:15Þ
The determinant of the 4 · 4 matrix can be shown to be sin2ðh1 � h2Þ, which is nonzero when the two m are
distinct. Hence when the two m are distinct, (2.15) leads to (2.14). Together with (2.3) and (2.5) we obtain

(2.7).

Theorem IIb. A necessary and sufficient condition for n to be normal to the symmetry plane is that n be an

eigenvector of U, Q(n) and Q(m) for any two distinct m.

Let n be an eigenvector of V, Q(n) and Q(m) for any two m. In this case (2.4)–(2.6) hold for h ¼ h1; h2.
When (2.4) and (2.5) hold, C45 ¼ �C26 and C46 ¼ �C35. Eq. (2.6) gives four equations for h ¼ h1; h2, which
can be written as
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cos 2h1 1
2
sin 2h1

cos 2h2 1
2
sin 2h2

" #
C26

C25 � C35

� �
¼ 0;

cos 2h1 1
2
sin 2h1

cos 2h2 1
2
sin 2h2

" #
C35

C26 � C36

� �
¼ 0: ð2:16Þ
The determinant of the 2 · 2 matrix is 1
2
sin½2ðh1 � h2Þ�, which is nonzero when the two m are not or-

thogonal. Hence when the two m are not orthogonal,
C26 ¼ C35 ¼ C36 ¼ C25 ¼ 0: ð2:17Þ
Together with (2.4) and (2.5) we obtain (2.7).

Theorem IIc. A necessary and sufficient condition for n to be normal to the symmetry plane is that n be an

eigenvector of V, Q(n) and Q(m) for any two distinct nonorthogonal m.

Finally, we consider the case when n is an eigenvector of U, V or Q(n). We then need n an eigenvector of

Q(m) for three m. When n is an eigenvector of Q(m) for three m associated with h ¼ h1; h2; h3, (2.6) can be

written as
K

C26

C25 þ C46

C45

2
4

3
5 ¼ 0; K

C46

C45 þ C36

C35

2
4

3
5 ¼ 0; ð2:18Þ
where
K ¼
cos2 h1 1

2
sin 2h1 sin2 h1

cos2 h2 1
2
sin 2h2 sin2 h2

cos2 h3 1
2
sin 2h3 sin2 h3

2
64

3
75: ð2:19Þ
The determinant of K is
Kj j ¼ sinðh1 � h2Þ sinðh2 � h3Þ sinðh3 � h1Þ: ð2:20Þ
It is nonzero when the three m are distinct. Eq. (2.18) then yields
C26 ¼ C46 ¼ C45 ¼ C35 ¼ C25 ¼ C36 ¼ 0: ð2:21Þ
Together with (2.3), (2.4) or (2.5), we obtain (2.7).

Theorem III. A necessary and sufficient condition for n to be normal to the symmetry plane is that n be an

eigenvector of U, V or Q(n), and an eigenvector of Q(m) for any three distinct m.

Chadwick et al. (2001, p. 2476) proved a test which says that n is normal to a symmetry plane when it is

an eigenvector of Q(n) and Q(m) for all m. The test is a special case of Theorem III. According to Theorem
III, n need to be an eigenvector of Q(n) and Q(m) for only three m. This fact, however, does not affect the

validity of their analysis.

The fact that m can be chosen arbitrarily is an attractive feature. The computation of Q(n) is cumber-

some when all three components of n are nonzero. In contrast, the computation of Q(m) is simplified

because m can be chosen to lie on a coordinate plane so that at least one component of m vanishes. There

are three such m on a symmetry plane. A good choice of four matrices for n to be an eigenvector is U, V and

Q(m) for two distinct m because U and V do not involve n and m.

It is shown in Ting (1996, p. 64) that U and V share the same set of eigenvectors when UV is symmetric.
The eigenvectors of a symmetric matrix are orthogonal to each other so that if two eigenvectors of U and V

are identical, the third eigenvectors are also identical. Thus UV must be symmetric when the material has
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more than one symmetry plane. If UV is not symmetric, the material can have at most one symmetry plane.

However, UV can be symmetric for materials with one or no symmetry plane.

A triclinic material has no symmetry plane. When the material has one symmetry plane we may take,

without loss in generality, x1 ¼ 0 as the symmetry plane. The material is monoclinic with the symmetry
plane at x1 ¼ 0 shown in (2.7) or (2.8).
3. Adding a second symmetry plane

We now add a second symmetry plane. Without loss in generality let the normal n to the second

symmetry plane lie on the plane x3 ¼ 0. Thus, (Fig. 1)
nT ¼ ½ cos h sin h 0 � ð3:1Þ

for any h 6¼ 0 because h ¼ 0 represents the first symmetry plane. We employ Theorem IIa so that n is an

eigenvector of U, V and Q(m) for two m. This means that
mT
1Un ¼ 0; mT

1Vn ¼ 0; mT
1Qðm1Þn ¼ 0; mT

1Qðm2Þn ¼ 0;

mT
2Un ¼ 0; mT

2Vn ¼ 0; mT
2Qðm1Þn ¼ 0; mT

2Qðm2Þn ¼ 0;
ð3:2Þ
where we choose
m1 ¼
0
0

1

2
4

3
5; m2 ¼

sin h
� cos h

0

2
4

3
5: ð3:3Þ
With the Cab given in (2.8), the third, second, first and fourth equations of (3.2), in that order, give
C34 ¼ 0; C14 ¼ �C24 ¼ C56 if h ¼ �p=3; ð3:4aÞ

C34 ¼ C14 ¼ C24 ¼ C56 ¼ 0 if h 6¼ �p=3: ð3:4bÞ

The remaining four equations in (3.2) are trivial identities when h ¼ p=2. If h 6¼ p=2, the seventh, sixth, fifth
and eighth equations of (3.2), in that order, yield
C44 ¼ C55; C11 ¼ C22; C13 ¼ C23; ð3:5aÞ

ðC11 � C12 � 2C66Þ cos 2h ¼ 0: ð3:5bÞ

It is readily shown from (3.4a,b) and (3.5a,b) that the material is orthotropic when h ¼ p=2 for which

(Voigt, 1910; Love, 1927; Cowin and Mehrabadi, 1987, 1995)
x

x1

2

n

Ψ

θ

x3

Fig. 1. The normal n to a symmetry plane.



Fig. 2.

numbe

T.C.T. Ting / International Journal of Solids and Structures 40 (2003) 7129–7142 7135
C ¼

C11 C12 C13 0 0 0

C22 C23 0 0 0
C33 0 0 0

C44 0 0

C55 0

C66

2
6666664

3
7777775
; ð3:6Þ
and tetragonal when h ¼ �p=4 for which
C ¼

C11 C12 C13 0 0 0

C11 C13 0 0 0
C33 0 0 0

C44 0 0

C44 0

C66

2
6666664

3
7777775
: ð3:7Þ
It is trigonal when h ¼ �p=3 for which
C ¼

C11 C12 C13 C14 0 0

C11 C13 �C14 0 0
C33 0 0 0

C44 0 0

C44 C14
1
2
ðC11 � C12Þ

2
6666664

3
7777775
; ð3:8Þ
Reduction of eight elastic symmetries by a successive imposition of a symmetry plane (see Fig. 1 in Chadwick et al., 2001). The

r in the parentheses refers to the equation in the paper. The h�, w� imply any h, w not used in the elastic symmetry.
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and transversely isotropic when h 6¼ �p=2, �p=3 or �p=4 for which
C ¼

C11 C12 C13 0 0 0

C11 C13 0 0 0

C33 0 0 0

C44 0 0
C44 0

1
2
ðC11 � C12Þ

2
6666664

3
7777775
: ð3:9Þ
These results are shown in Fig. 2 (see Fig. 1 in Chadwick et al., 2001). In (3.7)–(3.9) the x3-axis can be

identified as the principal axis of the material. Eqs. (3.7)–(3.9) can be modified for the cases when the x1- or
x2-axis is the principal axis.

The number of independent elastic constants is 21 for a triclinic material and 13 for a monoclinic
material shown in (2.8). The number of independent elastic constants for orthotropic, tetragonal, trigonal,

transversely isotropic shown in (3.6)–(3.9) are nine, six, six and five, respectively. Some of the elastic

constants can be made to vanish by choosing a new coordinate system. Hence the number of elastic

constants can be reduced (Cowin and Mehrabadi, 1995).

In the following sections we add a third symmetry plane to the materials shown in (3.6)–(3.9). The

matrices U and V reduce to diagonal matrices for these materials.
4. Adding a symmetry plane to an orthotropic material

In this section we add a new symmetry plane to an orthotropic material. Let the normal n to the new

symmetry plane be given by (Fig. 1)
nT ¼ ½ cosw cos h cosw sin h sinw �; ð4:1Þ
�p=2 < h6 p=2; �p=2 < w6 p=2: ð4:2Þ
The n for h and w not covered in (4.2) is the negative of n given in (4.1). The elastic matrix C for an or-

thotropic material is shown in (3.6). Although (3.6) is obtained by imposing two symmetry planes whose

normals are ðh;wÞ ¼ ð0; 0Þ and ðp=2; 0Þ, it automatically has a symmetry plane with the normal w ¼ p=2.
Hence these ðh;wÞ are excluded in this section.

We employ (3.2) and choose
mT
1 ¼ ½ sin h � cos h 0 �; mT

2 ¼ ½ 0 � sinw cosw sin h �: ð4:3Þ
The first four equations of (3.2) are trivial identities when h ¼ 0 or p=2 while the last four equations are

trivial identities when w ¼ 0 or h ¼ 0. We will study these special cases first.

(i) When w ¼ 0, the first four equations of (3.2) give
C11 � C22 ¼ C23 � C13 ¼ C44 � C55 ¼ ðC11 � C12 � 2C66Þð1� tan2 hÞ ¼ 0: ð4:4Þ
Hence the material is tetragonal shown in (3.7) when h ¼ �p=4 and transversely isotropic shown in (3.9)

when h 6¼ �p=4.
(ii) When h ¼ p=2, the last four equations of (3.2) give
C22 � C33 ¼ C13 � C12 ¼ C55 � C66 ¼ ðC22 � C23 � 2C44Þ cos 2w ¼ 0: ð4:5Þ
Hence the material is tetragonal when w ¼ �p=4 and transversely isotropic when w 6¼ �p=4. The x1-axis is
the principal axis for the tetragonal and transversely isotropic materials.
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(iii) When h ¼ 0, all eight equations of (3.2) are trivial identities. This is so because the vectors m1 and m2

in (4.3) are co-directional, and are not independent vectors. For h ¼ 0, we choose
mT
1 ¼ ½ 0 1 0 �; mT

2 ¼ ½� sinw 0 cosw cos h �: ð4:6Þ
It can then be shown that the first four equations of (3.2) are trivial identities while the last four equations

give
C11 � C33 ¼ C23 � C12 ¼ C44 � C66 ¼ ðC11 � C13 � 2C55Þ cos 2w ¼ 0: ð4:7Þ
The material is tetragonal when w ¼ �p=4 and transversely isotropic when w 6¼ �p=4. The x2-axis is the

principal axis for the tetragonal and transversely isotropic materials.

We next consider the general case w 6¼ 0 and h 6¼ 0 or p=2 . The first three equations of (3.2) give
C11 � C22 ¼ C23 � C13 ¼ C44 � C55 ¼ ðC11 � C12 � 2C66Þð1� tan2 hÞ: ð4:8Þ
The fifth, sixth and seventh equations yield
C22 � C33 ¼ C13 � C12 ¼ C55 � C66 ¼ ðC11 � C12 � 2C66Þð3 sin2 h� 1Þ: ð4:9Þ
Use of (4.8) and (4.9) in the fourth and eighth equations of (3.2) leads to
ðC11 � C12 � 2C66Þð1� 2 cos2 hÞð1� 4 sin2 wÞ ¼ 0; ð4:10Þ
ðC11 � C12 � 2C66Þ½ð4 sin2 w� 1Þ � 8ð1� 3 sin2 hÞð1� 3 cos2 wÞ cos2 w� ¼ 0: ð4:11Þ
There are several possibilities for (4.8)–(4.11) to hold.

(iv) When h ¼ �p=4, (4.10) holds while (4.8) and (4.11) reduce to
C11 � C22 ¼ C23 � C13 ¼ C44 � C55 ¼ 0; ð4:12Þ
ðC11 � C12 � 2C66Þð1� 2 cos2 wÞ ¼ 0: ð4:13Þ
If w ¼ �p=4, (4.13) holds and (4.9) simplifies to
C22 � C33 ¼ C13 � C12 ¼ C55 � C66 ¼ 1
2
ðC11 � C12 � 2C66Þ: ð4:14Þ
The elastic matrix C that satisfies (4.12) and (4.14) has the structure
C ¼

j� a kþ a k 0 0 0

j� a k 0 0 0

j 0 0 0

l 0 0

l 0

lþ a

2
6666664

3
7777775
; ð4:15aÞ
where
a ¼ 1
2
ðj� kÞ � l: ð4:15bÞ
There are only three independent elastic constants j, k and l. The elements of C have the relations
C44 ¼ 1
2
ðC11 � C12Þ; C66 ¼ 1

2
ðC33 � C13Þ ¼ 1

2
ðC11 þ C12Þ: ð4:16Þ
When the coordinate system is rotated about the x3-axis an angle p=4, the matrix C in (4.15a) referred to the

rotated coordinate system can be shown to be
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C ¼

j k k 0 0 0

j k 0 0 0
j 0 0 0

l 0 0

l 0

l

2
6666664

3
7777775
: ð4:17Þ
This represents a cubic material. Hence the C in (4.15a) with the a given in (4.15b) represents a cubic

material.
If w 6¼ �p=4, (4.13) gives
C11 � C12 � 2C66 ¼ 0: ð4:18Þ
Together with (4.12) and (4.14) we have
C ¼

kþ 2l k k 0 0 0

kþ 2l k 0 0 0

kþ 2l 0 0 0

l 0 0
l 0

l

2
6666664

3
7777775
: ð4:19Þ
This represents an isotropic material in which k and l are the Lame constants.

(v) When w ¼ �p=6 and h ¼ � sin�1ð1=
ffiffiffi
3

p
Þ, (4.10) and (4.11) hold while (4.8) and (4.9) reduce to
C11 � C22 ¼ C23 � C13 ¼ C44 � C55 ¼ 1
2
ðC11 � C12 � 2C66Þ;

C22 � C33 ¼ C13 � C12 ¼ C55 � C66 ¼ 0:
ð4:20Þ
The elastic matrix C that satisfies (4.20) has the structure
C ¼

j k k 0 0 0

j� a kþ a 0 0 0

j� a 0 0 0

lþ a 0 0

l 0
l

2
6666664

3
7777775
; ð4:21Þ
where a is defined in (4.15b). The C in (4.21) becomes the C in (4.17) when the coordinate system is rotated

about the x1-axis an angle p=4. Hence (4.21) represents a cubic material.

(vi) When w ¼ �p=6 and h ¼ � cos�1ð1=
ffiffiffi
3

p
Þ, (4.10) and (4.11) hold while (4.8) and (4.9) reduce to
C11 � C22 ¼ C23 � C13 ¼ C44 � C55 ¼ �ðC11 � C12 � 2C66Þ;
C22 � C33 ¼ C13 � C12 ¼ C55 � C66 ¼ �ðC11 � C12 � 2C66Þ:

ð4:22Þ
The elastic matrix C that satisfies (4.22) has the structure
C ¼

j� a k kþ a 0 0 0

j k 0 0 0

j� a 0 0 0

l 0 0
lþ a 0

l

2
6666664

3
7777775
; ð4:23Þ
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where a is defined in (4.15b). The C in (4.23) becomes the C in (4.17) when the coordinate system is rotated

about the x2-axis an angle p=4. Hence (4.23) represents a cubic material.

(vii) For all other h and w, (4.10) and (4.11) give (4.18). Use of (4.18) in (4.8) and (4.9) leads to (4.19) so

that the material is isotropic.
In summary, when a new symmetry plane is added to an orthotropic material shown in (3.6), the ma-

terial is tetragonal when
ðh;wÞ ¼ ð�p=4; 0Þ; ð0;�p=4Þ; ðp=2;�p=4Þ; ð4:24aÞ
transversely isotropic when
w ¼ 0; h 6¼ 0;�p=4; p=2;

h ¼ 0; p=2; w 6¼ 0;�p=4; p=2;
ð4:24bÞ
cubic when
ðh;wÞ ¼ ð�/1; p=6Þ; ð�/2; p=6Þ; ð�p=4; p=4Þ; ð�/1;�p=6Þ; ð�/2;�p=6Þ; ð�p=4;�p=4Þ; ð4:24cÞ
and isotropic for any other ðh;wÞ. In (4.24c),
0 < /1 ¼ sin�1ð1=
ffiffiffi
3

p
Þ < p=2; 0 < /2 ¼ cos�1ð1=

ffiffiffi
3

p
Þ < p=2: ð4:25Þ
5. Adding a symmetry plane to a tetragonal material

A tetragonal material of (3.7) is a special orthotropic material of (3.6) when
C11 ¼ C22; C13 ¼ C23; C44 ¼ C55: ð5:1Þ
Therefore the derivation is simpler than the one for an orthotropic material presented in the previous

section. We list below only the results of the derivation.

(i) When w ¼ 0 the material is transversely isotropic with the x1-axis being the principal axis.

(ii) When h ¼ 0 or p=2, the material is cubic if w ¼ �w=4 and isotropic if w 6¼ �p=4. The elastic matrix C

for the cubic material is given in (4.17).

(iii) For h 6¼ 0 or p=2 and w 6¼ 0 or p=2, the material is cubic when h ¼ �p=4 and w ¼ �p=4, and isotropic

otherwise. The elastic matrix C for the cubic material is given in (4.15).

In summary, when a new symmetry plane is added to a tetragonal material shown in (3.7), the material is

transversely isotropic if
w ¼ 0; h 6¼ 0;�p=4; p=2; ð5:2aÞ
cubic if
w ¼ p=4; h ¼ 0;�p=4; p=2;

w ¼ �p=4; h ¼ 0;�p=4; p=2;
ð5:2bÞ
and isotropic for any other ðh;wÞ.



7140 T.C.T. Ting / International Journal of Solids and Structures 40 (2003) 7129–7142
6. Adding a symmetry plane to a trigonal material

The elastic matrix C for a trigonal material is given in (3.8). If the coordinate system is rotated about the

x3-axis an angle p=6, the three C14 in (3.8) change sign (Ting, 2000). We employ (3.2) in which n, m1, m2 are
shown in (4.1) and (4.3). The first two equations of (3.2) are trivial identities. As before the special cases of

w ¼ 0 and h ¼ 0; p=2 are studied first.

(i) When w ¼ 0, all equations in (3.2) are trivial identities except the seventh, which simplifies to
C14ð4 cos2 h� 1Þ sin2 h ¼ 0: ð6:1Þ

Since h ¼ 0 and �p=3 are the normals to the symmetry plane of a trigonal material, they are excluded here.

Hence C14 ¼ 0, and the material is transversely isotropic.
(ii) When w ¼ p=2, the fifth and sixth equations of (3.2) are trivial identities. The eighth equation gives

C14 ¼ 0 which satisfies the rest of the equations in (3.2). Hence the material is transversely isotropic.

(iii) For h ¼ p=2, it can be shown that the material is isotropic unless w ¼ �/1 or �/2 where /1, /2 are

defined in (4.25). If w ¼ �/1, we have
C33 � C11 ¼ C12 � C13 ¼ C66 � C44 ¼ �C14=
ffiffiffi
2

p
: ð6:2Þ
If w ¼ �/2, we also have (6.2). The elastic matrix C that satisfies (6.2) has the structure
C ¼

j� 3c kþ c kþ 2c �
ffiffiffi
2

p
c 0 0

j� 3c kþ 2c �
ffiffiffi
2

p
c 0 0

j� 4c 0 0 0
lþ 2c 0 0

lþ 2c �
ffiffiffi
2

p
c

lþ c

2
6666664

3
7777775
; ð6:3aÞ
where
c ¼ 1
6
ðj� k� 2lÞ: ð6:3bÞ
It has only three independent elastic constants, and satisfies the relation
C66 ¼ 1
2
ðC11 � C12Þ: ð6:4Þ
The cubic material defined in (4.17) has six symmetry planes. The normals to the symmetry planes are along

the coordinate axes and on the coordinate planes making an angle p=4 with the coordinate axes. The

normals on the coordinate planes make an angle p=3 to each other (Chadwick et al., 2001). An octahedral

plane that is equally inclined to the coordinate axes contains three such normals. Let x�i (i ¼ 1; 2; 3) be a new
coordinate system in which the x�1- and x�2-axes are on an octahedral plane with the x�1-axis being one of the

normals. One choice of such coordinate system is
x�1
x�2
x�3

2
4

3
5 ¼

1=
ffiffiffi
2

p
�1=

ffiffiffi
2

p
0

1=
ffiffiffi
6

p
1=

ffiffiffi
6

p
�2=

ffiffiffi
6

p

1=
ffiffiffi
3

p
1=

ffiffiffi
3

p
1=

ffiffiffi
3

p

2
4

3
5 x1

x2
x3

2
4

3
5: ð6:5Þ
The elastic matrix C of (4.17), when referred to the x�i coordinate system, takes the form (6.3a,b) with the

lower sings for C14, C24 and C56. If we chose a different octahedral plane or a different normal on the

octahedral plane as the x�1-axis, the upper signs in (6.3a) apply. Hence the C in (6.3a,b) represents a cubic

material.

(iv) When h ¼ 0, the m1 and m2 in (4.3) are co-directional, and hence are not independent vectors. We
replace m1 and m2 by the ones given in (4.6). It can then be shown that the material is isotropic for all w 6¼ 0

or p=2.
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(v) For other h and w for which h 6¼ 0 or p=2 and w 6¼ 0 or p=2, the third equation of (3.2) gives
C14ð1� 4 sin2 hÞ ¼ 0: ð6:6Þ
The fourth and eighth equations of (3.2) are compatible if
C14ð1� 3 sin2 wÞð1� 3 cos2 wÞ ¼ 0: ð6:7Þ
It can be shown that, when h ¼ p=3 and w ¼ �/1 or �/2, we have (6.2). The /1 and /2 are defined in

(4.25). If h ¼ �p=3 and w ¼ �/1 or �/2, we also have (6.2). Thus the material is cubic. Otherwise it is

isotropic.

In summary, when a new symmetry plane is added to a trigonal material of (3.8), the material is

transversely isotropic if
w ¼ 0; h 6¼ 0;�p=3 or w ¼ p=2; ð6:8aÞ
cubic if
w ¼ �/1;�/2 and h ¼ 0;�p=6; p=2; ð6:8bÞ
and isotropic for any other ðh;wÞ.
7. Transversely isotropic and cubic materials

It is very simple to show that when a new symmetry plane is added to a transversely isotropic or cubic

material, the material is isotropic. Since any plane is a symmetry plane for an isotropic material, no further

reduction is possible. The results obtained in Sections 3–7 are summarized in Fig. 2.

The structure of the elastic matrix C for a cubic material in (4.17) is the familiar one in the literature.

Less familiar are the C shown in (4.15a,b) and (6.3a,b). The C in (4.15a,b) resembles a tetragonal material.

As shown in Section 5, when a new symmetry plane with the normal h ¼ �p=4 and w ¼ �p=4 is added to a

tetragonal material of (3.7), we obtain the cubic material shown in (4.15a,b). The C in (6.3a,b) resembles a

trigonal material in view of (6.4). The normals to the symmetry planes of a trigonal material make an angle
p=3. The normals to the symmetry planes of a cubic material given in (4.17) are along the coordinate axes

and on the coordinate planes making an angle p=4 with the coordinate axes. The normals that lie on the

coordinate planes make an angle p=3 with each other. It is therefore not surprising that a cubic material

resembles a trigonal material. This fact has been pointed out by Chadwick et al. (2001).
8. Concluding remarks

By imposing one symmetry plane at a time we have proved that there are exactly eight elastic symmetries

for a linear anisotropic elastic material. The results are summarized in Fig. 2. Fig. 2 is re-drawn from Fig. 1

in Chadwick et al. (2001) but we have added explicitly what symmetry planes are needed in reducing to the

next elastic symmetry. It is seen from Fig. 2 that the shortest routes from triclinic, which has no symmetry

plane, to isotropic is triclinic–monoclinic–either orthotropic, tetragonal, trigonal or transversely isotropic–

isotropic. These four routes require imposition of three symmetry planes. The longest route is triclinic–
monoclinic–orthotropic–tetragonal–cubic–isotropic. This route requires imposition of five symmetry

planes. The routes that require imposition of four symmetry planes are triclinic–monoclinic, and then
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(i) orthotropic–tetragonal–isotropic, (ii) orthotropic–transversely isotropic–isotropic, (iii) orthotropic–cubic–

isotropic, (iv) tetragonal–transversely isotropic–isotropic, (v) tetragonal–cubic–isotropic, (vi) trigonal–

transversely isotropic–isotropic, or (vii) trigonal–cubic–isotropic. Thus it takes as few as three, and at most

five, symmetry planes to reduce a triclinic material to an isotropic material.
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